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Abstract—Micro-beams, where the transverse dimension of the beam is of the order of microns,
are sometimes composed of polycrystals where the average crystal dimension is of the same order
as the transverse beam dimension. We show in this paper that classical beam theory can be used to
describe the behavior of these micro-beams if the crystals have cubic symmetry. If the symmetry is
of lower-order than cubic then the behavior of the micro-beam depends on the internal arrangement
of the crystals within the beam. We show, however, that for a particular class of tetragonal crystals
(six independent elastic constants) the classical beam equation may still be used if a local average is
introduced. © 1998 Elsevier Science Ltd. All rights reserved.

1. STATEMENT OF PROBLEM

For a homogeneous beam it is shown in any standard textbook on beam theory (Popov
et al., 1978) that the governing equation for the displacement y(x) is

d*/dx?[(ED) d*y(x)/ dx*] = q(x). )

Here the quantity EId*y(x)/dx? is equal to the bending moment M(x), g(x) is a transverse
distributed force, Eis Young’s modulus and 7is the moment of inertia. Referring to Fig. 1 we
see that for § = dy/dx « 1 the curvature R is given by the relation 1/R = df/dx = d?y/dx’.

The basic assumption is that the strain e,, is linear over the transverse beam dimension
in the y-direction. It has the form

exx = —y/R. @

Assuming next the basic stress—strain relation for an isotropic linear elastic material we
find that the stress component 7., is equal to

Tax = Eexx = —Ey/R (3)

We then find the above expression for M(x). In addition, it is assumed that the stress
components t,, and 1., are zero throughout the beam and the shear components may be
neglected.

For a macroscopic beam composed of a polycrystal it is usually assumed that the
characteristic size of the smallest transverse dimension of the beam, Ly, satisfies the con-
dition Ly > d where d is a characteristic grain dimension. The length of the beam, L, of
course, is much larger than Ly. In this case, on the length scales of interest the beam may
be considered to be homogeneous and isotropic. In this paper, however, we are interested
in micro-beams where L, is of order of d. The condition L >» Ly remains true and we
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Fig. 1. Beam deformation under bending.

continue to assume that the beam is statistically homogeneous in the direction of the beam
axis.

When Ly is of order 4 the beam may no longer be considered to be homogeneous in
the transverse y—z plane. In this paper we show that in spite of this transverse inhomogeneity,
the standard beam equation given in eqn (1) may still be used if the individual crystals have
cubic symmetry. However, if the symmetry is of a lower-order we expect the beam equation
to be dependent on the microstructure of the polycrystal within the beam. In Section 3 we
discuss the special casz of tetragonal crystals where classical beam theory may still be
approximately correct if a local average is used. For the case we consider there are six
independent elastic constants, but no coupling between the diagonal strain elements and
the off-diagonal strain clements in the strain energy function.

2. MICRO-BEAM COMPOSED OF A POLYCRYSTAL OF CUBIC CRYSTALS

2.1. Stress—strain relations along the principal axes for a crystal with cubic symmetry

When a material is homogeneous and isotropic two constants A, Lame’s constant and
u, the shear modulus are sufficient to define the strain energy function W. Here (Love,
1944)

W =1/DI(A+2u) e +eyy +ez]’ +ulel, +ei. +ej, —dee,, —dee..—de,e.]l. (4
For cubic symmetry there are three independent constants ¢,;, ¢;; and ¢,,. Here
W =(1/2)ci, ek + e}, el + Cralene,, +ene. te,e.]+(1/2)culel, +ei +ei].  (5)
From eqn (5) we find the following stress—strain relations along the principal axes

Tax = cllexx+(1/2)012[eyy+ezz]
Tyy = Clleyy+(1/2)cl2[exx+ezz]
cllezz+(1/2)c12[exx+eyy]

I

Tz
Txy = c44exy
Txz = C44€y;

Tyz = C44ey2. (6)
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2.2. Single crystal alignment within the micro-beam

Let us suppose that a single cubic crystal within the micro-beam is aligned so that the
principal axes coincide with the beam axes. In this case if the beam is under pure bending
we satisfy eqns (2) and (3) and the conditions 7,, = 7., = 0. This yields the expected result

T = [er —(1/2)ctz/(er1 + (1/2)er)]ess
Toe = Ee,. Q)
Next let us assume that the principal crystal axes are rotated with respect to the beam axes.

The direction cosines are given by ay, (i = 1 is the x-axis, i = 2 is the y-axis and i = 3 is the
z-axis of the principal axes while the k index represents the beam axes). We then have

T;j = aikajmz—km (8)

where t;; gives the stress components along the principal axes. Writing eqn (6) in terms of
the principal axes then gives

T;x = Cl]e;x+(l/2)c12[e;y+e;z]
vay = Clle;y+(1/2)012[e;x +e;z]
T = cne+(1/2)ci, e + el

’ s
Txy = c44exy
’ 4
Txz = C44€yz

T;z = 6448;,2. (9)

In order to determine the stress—strain relations along the beam axes we substitute 1,
from eqn (8) in the left-hand side of eqn (9) and a similar expression for e; on the right-
hand side. After manipulation and use of some identities governing sums of the direction
cosines we find the same result as that given in eqn (7). That is, independent of the
orientation of the principal axes of a cubic crystal [see eqn (5)] the stress-strain relation
along the beam axis is the same as that given for an isotropic material. The above result
follows from the fact that the constant ¢,, does not enter the calculation and the strains e,,,
e,, and e, all appear in the same manner in the strain energy function. As in the isotropic
beam analysis we have assumed here that under pure bending all stress components except
T, may be neglected in the beam coordinate system.

2.3. Beam equation

If assume that we have a beam made of a single crystal orientated along the beam axis,
we may conceptually construct a beam of polycrystals by successively replacing portions
of the crystal with crystals of different orientations, until the beam is a polycrystal. Prior
to the first replacement the stress field has only a 1., stress component. As we see from the
analysis in Section 2.2 the stress—strain state within the added crystal is the same as it was
prior to its addition. Adding successive crystals does not change the stress—strain state and
we conclude that the stress-strain state in the beam is exactly the same as it would be for a
beam composed of a homcgeneous isotropic material. It thus follows that eqn (1) is the
equation governing the displacement y(x) of the micro-beam.

3. MICRO-BEAM COMPOSED OF A POLYCRYSTAL OF NON-CUBIC CRYSTALS

3.1. Stress—strain relation for a tetragonal polycrystal
In this section we restrict our attention to non-cubic crystals where the strain energy
function is of the form
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W = (1/2)01 ler(x+C12e::xeyy +cl3exxezz + (l/z)clle)zzy +Cl3eyyezz+ (1/2)6‘338222
+(1/2)cases, +(1/2)canel + (1/2)csel,.  (10)

Here there are six independent elastic constants. The stress—strain relations are now

’ 7’ ’ 7’
Tax = Cy 1€y +C12€,, +C13€;;
’ _— ’ ’ ’
Tyy - chexx+clleyy+Cl3ezz

’ 7’ 4 ’
T2 = C13exx+613eyy+c33ezz' (11)

The primes indicate principal axes rotated with respect to the beam axes.

For a particular grain within the polycrystal we substitute eqn (8) into the left-hand
side of eqn (11) and a similar expression for the strains into the right-hand side of eqn (11).
Setting 7,, = 7., = 0 in the resultant equation we find a relationship of the form

Txx=F(cllac]2’cl3yc339aij)exx (12)

for the stress—strain relation along the beam axis.

Unlike the isotropic or cubic crystal case the proportionality constant between t,, and
e, 1s not Young’s modulus, but rather a complicated function of four elastic constants and
the orientation of the crystal grain relative to the beam axes. Thus, at any cross-section of
the beam the stress—strain relation is a function of the transverse coordinates y and z. That
is, eqn (3) now becomss

Txx = _F(yazax)(y/R) (13)

The bending moment, M, is found from eqn (13) by integrating the quantity yz,, over
the beam cross-sectior.. In eqn (1) we have the constant EI where

I= J y?dd (14)

and A is the transverse (vz) cross-section of the beam. Here ET is independent of x. For the
strain—energy function given in eqn (10) we find for the bending moment M the expression

M = [EN*(x)d’y/dx* (15)

where the effective constant [EI]*(x) at each beam position x, is given by the expression

(ED*(x) = j Flx, .2y dA. (16)

A

The function [EI}*(x) is a very rapidly varying function on the scale of the beam length
L. Since the variation depends on the crystal orientation in each transverse section we
expect the characteristic scale of variation of [EI]*(x) in the x-direction to be at most of
the order of several grain diameters (Beran ez al., 1996). This would correspond to the
characteristic correlation distance over which adjacent grains are correlated in the x-
direction.

This rapid variation of [EI}*(x) is of importance if any measurements are made on the
scale of the grain size. If, however, we are only interested in the micro-beam deflection
locally averaged over many grain diameters in the x-direction then the function [EI]*(x)
may be replaced by an effective constant [El], which is independent of x. We remember
that we have assumed that the beam is statistically homogeneous in the x-direction.

Equation (1) is now given by
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d?/dx?[[ET] d*p(x)/dx’] = g(x). a7

3.2. Determination of the effective constant [El],

The constant [E1], is quite difficult to determine since it depends on the orientation of
the crystals and the correlation between the orientations of adjacent crystals. However,
recently Steinberg and McCoy (1996, 1997) have shown that when [EI}*(x) varies rapidly
on a scale small compared to L then [E]], is given by the following expression :

(ET\ =1 / [(I/AL)J (1/IEN*(x)) dX} (18)

where AL is a distance that is large compared to a characteristic grain size, 4, but satisfies
the condition AL « L. We rote that [El], is not the average of [EI]*(x), but rather the
inverse of the harmonic average.

For AL > d the effective constant [E], is also given by the statistical average

[ENa = V[Y/[EN*(x)], (19)

where the overbar indicates an ensemble average. Since the statistics of the polycrystal are
assumed to be homogeneous in the x-direction, the right-hand side of eqn (10) is inde-
pendent of x. The evaluation of eqn (10) may be done over any beam cross-section and
does not require a knowledge of the variation of [El]*(x) with x.

The determination of [EI], using eqn (19) is a very tedious process that requires an
ensemble of beams manufacrured in an identical manner. It would be necessary to take a
sample micro-beam or manyv sample micro-beams and analyze a large number of cross-
sections. In each cross-secticn the orientation of the individual crystals would have to be
found as a function of y and z. Once this is done [E/]* can be calculated. Finally [El],
would be determined from eqn (19) using many sample cross-sections.

A far simpler procedure, and one that is nondestructive, would be to use eqn (17). The
beam would be loaded in a simple manner, the displacement y(x) measured at a particular
point and [EI], found. For better accuracy, y(x) could be measured at several points and
a best fit for [E[], determined. The micro-beam could then be used in a desired application
with [E]], a known quantity.

4. SUMMARY

In this paper it was shown that the equation governing homogeneous beams [eqn (1)]
could be used to determine the displacement for micro-beams composed of polycrystals
where the individual crystals have cubic symmetry [eqn (5)]. It was further shown that for
a class of crystals with lower symmetry [eqn (10)] the governing equation is given by eqn
(17) where [EI], is defined by eqns (18) and (16).

The constant [El], is related to the six elastic constants in eqn (10) in a very complex
way. It may be determined by an analysis of the micro-beam micro-structure. However, a
more direct way would be to load the micro-beam, measure the displacement at one or
several points and use eqn (17) to find the relationship between the measured displacement
and the constant [El]4.

We see from the analysis given in this paper, that the effective constant in the beam
equation governing a micro-beam composed of a polycrystal is very dependent upon the
symmetry properties of the individual crystals. For cubic crystals the equation is the same
as for a homogeneous isotropic beam, but for crystals of lower symmetry the constant is
dependent upon the way the individual crystals are placed within the beam. Unfortunately,
there is no simple relationship between the elastic constants of the individual crystals and
the effective constant. Moreover, if displacement measurements are made on the scale of the
characteristic crystal size (rather than, as usual, smoothed over a distance large compared to
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this size) then the effective constant is a rapidly varying function of distance in the beam
direction.

Finally, we note that we have used a beam theory that neglects the effects of transverse
shear. If the shear effects are important then the conclusion that a micro-beam composed
of cubic crystals behaves in the same manner as a homogeneous and isotropic beam is not
necessarily valid. Before undertaking a more general analysis, however, it is felt that some
experimental data must be available on the behavior of micro-beams under controlled
conditions.
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